Volume No.06, Issue No. 12, December 2017 www.ijarse.com

Common Fixed Point Theorem of Compatible Type of (K) Satisfying Integral type Inequality on Intuitionistic Fuzzy Metric Spaces

Abha Tenguria¹, Anil Rajput² and Varsha Mandwariya³

- ¹ Department of Mathematics, Govt. MLB, PG College, Bhopal, India.
- ² Department of Mathematics, Govt. PG Nodal College, Bhopal, India.

ABSTRACT

In this paper we prove common fixed point theorem for compatible of type (K) satisfying integral type inequality in intuitionistic fuzzy metric space and obtain a common fixed point theorem for self mapping in intuitionistic fuzzy metric space satisfying integral type inequality.

Keywords: Intiutionistic Fuzzy Metric Space, Fixed Point, Compatible Maps Of Type (K).

I INTRODUCTION

An essential feature of metric space is that for any two points in the metric space, there is defined a positive number called the distance between the points. Zadeh [20] introduced the concept of fuzzy set A in X is a function with domain X and value in [0, 1]. Deng [3], Erceg [4], Fang [5], George and Veeramani [7], Kaleva and Seikkala[10], Kramosil and Michalek [11] have introduced the concept of fuzzy metric spaces in different ways. Atanassove [1] introduced and studied the concept of intuitionistic fuzzy sets, In 2004, Park [15] defined the notion of Intuitionistic fuzzy metric space with the help of continuous *t*-norms and continuous *t*-conorms as generalization of fuzzy metric space due to George and Veeramani[7]. Several authors [12, 13, 14, 16] proved some fixed points theorem in intuitioistic fuzzy metric spaces. Further Coker [2] introduced the concept of Intuitionistic fuzzy topological spaces. Turkoglu et al. [17] gave a generalization of Jungck's common fixed point theorem [9] to Intuitionistic fuzzy metric spaces. In this paper we prove a common fixed point theorem in Intuitionistic fuzzy metric space for compatible mapping type of (K) satisfying integral type inequality.

II. PRELIMINARIES

Definition 2.1:

A binary operation*: $[0, 1] \times [0, 1] \rightarrow [0, 1]$ is continuous t-norm if * is satisfies the following conditions:

³ Department of Mathematics, Sant Hirdaram Girls College, Bhopal, India.

Volume No.06, Issue No. 12, December 2017 www.ijarse.com

IJARSE ISSN: 2319-8354

- (i) * is commutative and associative;
- (ii) * is continuous;
- (iii) a * 1 = a for all $a \in [0, 1]$;
- (iv) $a * b \le c * d$ whenever $a \le c$ and $b \le d$ for all $a, b, c, d \in [0, 1]$.

Definition 2.2:

A binary operation $\Diamond: [0, 1] \times [0, 1] \to [0, 1]$ is continuous *t*-conorm if \Diamond is satisfies the following conditions:

- (i) ◊ is commutative and associative;
- (ii) ◊ is continuous;
- (iii) $a \diamond 0 = a$ for all $a \in [0, 1]$;
- (iv) $a \diamond b \leq c \diamond d$ whenever $a \leq c$ and $b \leq d$ for all $a, b, c, d \in [0, 1]$.

Definition 2.3:

A 5-tuple (X, M, N, *, •) is said to be an intuitionistic fuzzy metric space if X is an arbitrary set, * is a continuous t-norm, • is a continuous t-conorm and M, N are fuzzy sets on $X^2 \times (0, \infty)$ satisfying the following conditions, for all x, y, z $\in X$, s, t > 0,

- (i) $M(x, y, t) + N(x, y, t) \le 1$
- (ii) M(x, y, 0) = 0
- (iii) M(x, y, t) = 1 if and only if x = y;
- (iv) $M(x, y, t) = M(y, x, t) \neq 0$ for $t \neq 0$;
- (v) $M(x, y, t) * M(y, z, s) \le M(x, z, t + s);$
- (vi) $M(x, y, \cdot)$: $[0, \infty) \rightarrow [0, 1]$ is continuous.
- (vii) $\lim_{t\to\infty} M(x, y, t) = 1$
- (viii) N(x, y, 0) = 1
- (ix) N(x, y, t) = 0 if and only if x = y;
- (x) $N(x, y, t) = N(y, x, t) \neq 0$ for $t \neq 0$;
- (xi) $N(x, y, t) \circ N(y, z, s) \ge N(x, z, t + s)$;
- (xii) $N(x, y, \cdot)$: $[0, \infty) \rightarrow [0, 1]$ is continuous.
- (xiii) $\lim_{t\to\infty} N(x, y, t) = 0$

Then (M, N) is called an intuitionistic fuzzy metric on X. The functions M(x, y, t) and N(x, y, t) denote the degree of nearness and the degree of non-nearness between x and y with respect to t, respectively.

ISSN: 2319-8354

Volume No.06, Issue No. 12, December 2017 www.ijarse.com

Definition 2.4:

Let $(X, M, N, *, \bullet)$ be an intuitionistic fuzzy metric space. Then a sequence $\{x_n\}$ is said to be

(i) Convergent to a point $x \in X$ if

$$\lim_{n\to\infty} M(x_n, x, t) = 1$$
 and $\lim_{n\to\infty} N(x_n, x, t) = 0$

For all t > 0

(ii) Cauchy sequence if

$$\lim_{n\to\infty} M(x_{n+n}, x_n, t) = 1$$
 and $\lim_{n\to\infty} N(x_{n+n}, x_n, t) = 0$

For all t > 0 and p > 0

Definition 2.5:

A sequence $\{x_n\}$ in an intuitioistic fuzzy metric space $(X, M, N, *, \diamond)$ is called complete if and only if every Cauchy sequence in X is convergent.

Definition 2.6:

Let S and T be self mapping of an intuitionistic fuzzy metric space (X, M, N, *, •). Then a pair (S, T) is said to be compatible if

$$\lim_{n\to\infty} M(STx_n, TSx_n, t) = 1$$
 and $\lim_{n\to\infty} N(STx_n, TSx_n, t) = 0$

For all t > 0, whenever $\{x_n\}$ is sequence in X such that $\lim_{n \to \infty} Sx_n = \lim_{n \to \infty} Tx_n = u$ for some $u \in X$.

Definition 2.7:

Let S and T be self mapping of an intuitionistic fuzzy metric space (X, M, N, *, •). Then a pair (S, T) is said to be compatible of type (A) if

$$\lim_{n \to \infty} M(STx_n, TTx_n, t) = 1$$
 and $\lim_{n \to \infty} M(TSx_n, SSx_n, t) = 1$

and

$$\lim_{n \to \infty} N(STx_n, TTx_n, t) = 0$$
 and $\lim_{n \to \infty} N(TSx_n, SSx_n, t) = 0$

For all t > 0, whenever $\{x_n\}$ is sequence in X such that $\lim_{n \to \infty} Sx_n = \lim_{n \to \infty} Tx_n = u$ for some $u \in X$.

Definition 2.8:

Let S and T be self mapping of an intuitionistic fuzzy metric space (X, M, N, *, •). Then a pair (S, T) is said to be compatible of type (P) if

Volume No.06, Issue No. 12, December 2017 www.ijarse.com

IJARSE ISSN: 2319-8354

$$\lim_{n\to\infty} M(TTx_n, SSx_n, t) = 1$$
 and $\lim_{n\to\infty} N(TTx_n, SSx_n, t) = 0$

For all t > 0, whenever $\{x_n\}$ is sequence in X such that $\lim_{n \to \infty} Sx_n = \lim_{n \to \infty} Tx_n = u$ for some $u \in X$.

Definition 2.9:

Let S and T be self mapping of an intuitionistic fuzzy metric space (X, M, N, *, •) are called reciprocally continuous on X if $\lim_{n\to\infty} STx_n = Sx$ and $\lim_{n\to\infty} TSx_n = Tx$ whenever $\{x_n\}$ is sequence in X such that $\lim_{n\to\infty} Sx_n = \lim_{n\to\infty} Tx_n = u$ for some $u\in X$.

Definition 2.10:

Let S and T be self mapping of an intuitionistic fuzzy metric space $(X, M, N, *, \diamond)$.. Then a pair (S, T) is said to be compatible of type (K) iff $\lim_{n\to\infty} M(SSx_n, TTx, t) = M(Tx, Sx, t)$

 $\lim_{n\to\infty} SSx_n = Tx \text{ and } \lim_{n\to\infty} TTx_n = Sx, \text{ whenever } \{x_n\} \text{ is sequence in X such that } \lim_{n\to\infty} Sx_n = \lim_{n\to\infty} Tx_n = u$ for some $u\in X$.

Example

Let X = [0, 10] with the usual metric d(x, y) = |x - y|, define $M(x, y, t) = \frac{t^2}{t^2 + d(x, y)}$ for all $x, y \in X, t > 0$ and $a * b = \min(a, b)$ for all $a, b \in [0, 1]$ then (X, M, *) is a fuzzy metric space. We define self-mappings S and T as Sx = 10, Tx = 0 for $x \in [0, 5] - \{\frac{5}{2}\}$, Sx = 0, Tx = 10 for $x = \frac{5}{2}$ and $Sx = \frac{10 - x}{2}$, $Tx = \frac{x}{2}$ for $x \in [5, 10]$. Then, S and T are not continuous at $x = 5, \frac{5}{2}$.

Consider a sequence $\{x_n\}$ in X such that $x_n = 5 - \frac{1}{n}$ for all $n \in \mathbb{N}$.

nor compatible of type (A) (compatible type of (p), reciprocal continuous).

Then we have $Sx_n = \frac{(10-x_n)}{2} \rightarrow \frac{5}{2} = x$ and $Tx_n = \frac{x_n}{2} \rightarrow \frac{5}{2} = x$

Also, we have $SSx_n = S\frac{(5-x_n)}{2} = 10 \rightarrow 10$, $STx_n = S\frac{(x_n)}{2} = 10 \rightarrow 10$, T(x) = 10 and $TTx_n = T\frac{(x_n)}{2} = 0 \rightarrow 0$, $TSx_n = T\frac{(5-x_n)}{2} = 0 \rightarrow 0$, $TSx_n = T\frac{(5-x_n)}{2} = 0 \rightarrow 0$, $TSx_n = T\frac{(5-x_n)}{2} = 0 \rightarrow 0$. Therefore, (S, T) is compatible of type (K) but the pair (S, T) is neither compatible

Lemma: 2.1

Let (X, M, N, *, •) be an intuitionistic fuzzy metric space. Then for all x, y in X, M(x, y, .) is non decreasing.

Volume No.06, Issue No. 12, December 2017 www.ijarse.com

ISSN: 2319-8354

Lemma: 2.2

Let (X, M, N, *, •) be an intuitionistic fuzzy metric space. If there exist $q \in (0,1)$ such that $M(x, y, qt) \ge M(x, y, t)$ and $N(x, y, qt) \le N(x, y, t)$ for all x, y and t > 0 then x = y.

Lemma: 2.3

The only t-norm * satisfying $r * r \ge r$ for all $r \in [0, 1]$ is the minimum t-norm, that is $a * b = \min\{a, b\}$ for all $a, b \in [0, 1]$.

Main Theorem

Theorem:

Let $(X, M, N, *, \bullet)$ be a complete Intuitionistic fuzzy metric space and A, B, S and T be self mapping of X satisfying the following conditions:

(i) $A(X) \subseteq T(X)$ and $B(X) \subseteq S(X)$

(ii)
$$\int_{0}^{M(Ax,By,kt)} \psi(t)dt \ge \int_{0}^{M(Ax,Ty,\infty t)*M(Bx,Tx,(2-\infty)t)} \psi(t)dt$$

$$\int_{0}^{N(Ax,By,kt)} \psi(t)dt \leq \int_{0}^{N(Ax,Ty,xt) \circ N(By,Ty,t) \circ N(Sx,Ty,t) \circ} \psi(t)dt$$

Where $\alpha: [0, 1] \to [0, 1]$ is continuous function such that r(t) > t for some 0 < t < 1 for all $x, y \in X$, $k \in (0,1), \alpha \in (0,2)$ and

(iii) S and T are continuous.

If (A, S) and (B, T) compatible of type of (K), then A, B, S and T have a unique common fixed point.

Proof:

(i) $A(X) \subseteq T(X)$ and $B(X) \subseteq S(X)$,

So for any $x_0 \in X$, there exists $x_1 \in X$ such that $Ax_0 = Tx_1$ and for this x_1 , there exists $x_2 \in X$ such that $Bx_1 = Sx_2$. Inductively, we define a sequence $\{y_n\}$ in X such that

$$y_{2n-1} = Ax_{2n-2} = Tx_{2n-1}$$
 and $y_{2n} = Bx_{2n-1} = Sx_{2n}$ for all $n = 0, 1, 2...$

Taking $x = x_{2n}$ and $y = x_{2n+1}$ in (ii), we get

Volume No.06, Issue No. 12, December 2017 www.ijarse.com

IJARSE ISSN: 2319-8354

$$\int_{0}^{M(y_{2n+1},y_{2n+2},kt)} \psi(t)dt = \int_{0}^{M(Ax_{2n}Bx_{2n+1},kt)} \psi(t)dt$$

$$= \int_{0}^{M(Ax_{2n}Sx_{2n},t)*M(Bx_{2n+1},Tx_{2n+1},t)*M(Sx_{2n},Tx_{2n+1},t)*} \psi(t)dt$$

$$\geq \int_{0}^{M(Ax_{2n}Sx_{2n},t)*M(Bx_{2n+1},Tx_{2n+1},t)*M(Bx_{2n},Tx_{2n+1},t)*} \psi(t)dt$$

Now we put $\propto = 1 - q$ with $q \in (0, 1)$, we get

$$\int_{0}^{M(y_{2n+1},y_{2n+2},kt)} \psi(t)dt \ge \int_{0}^{M(Ax_{2n},Sx_{2n},t)*M(Bx_{2n+1},Tx_{2n+1},t)*M(Sx_{2n},Tx_{2n+1},t)*} \psi(t)dt$$

$$= \int_{0}^{M(y_{2n+1},y_{2n+2},Tx_{2n+1},t)*M(Bx_{2n},Tx_{2n},t)*M(y_{2n+2},Tx_{2n+1},t)*M(y_{2n},y_{2n+1},t)*} \psi(t)dt$$

$$= \int_{0}^{M(y_{2n+1},y_{2n},t)*M(y_{2n+2},Tx_{2n+1},t)*M(y_{2n},y_{2n+1},t)*} \psi(t)dt$$

$$\begin{array}{l} & \text{M} \ (y_{2n}y_{2n+1}t)*\text{M} \ (y_{2n+1}y_{2n+2}t)*\text{M} \ (y_{2n}y_{2n+1}t)* \\ \geq \int_{0}^{\text{M} \ (y_{2n+1}y_{2n+2}t)*\text{M} \ (y_{2n}y_{2n+1}t)*\text{M} \ (y_{2n}y_{2n+1}q\ t)} \psi(t)dt \end{array}$$

$$\geq \int_{0}^{M(y_{2n}y_{2n+1},t)*M(y_{2n+1},y_{2n+2},t)*M(y_{2n}y_{2n+1},qt)} \psi(t)dt$$

$$\geq \int_0^{\mathrm{M}(y_{2n}y_{2n+1},t)*\mathrm{M}(y_{2n+1}y_{2n+2},t)} \psi(t)dt$$

And

$$\begin{split} \int_{0}^{N \, (y_{2n+1},y_{2n+2},kt)} \psi(t) dt = & \int_{0}^{N \, (Ax_{2n}Bx_{2n+1},kt)} \psi(t) dt \\ & \qquad \qquad N \, (Ax_{2n}Sx_{2n},t) \circ N \, (Bx_{2n+1},Tx_{2n+1},t) \circ N \, (Sx_{2n},Tx_{2n+1},t) \circ \\ & \leq & \int_{0}^{N \, (Ax_{2n}Tx_{2n+1},\infty t) \circ N \, (Bx_{2n},Tx_{2n},(2-\infty)t)} \psi(t) dt \end{split}$$

Now we put $\propto = 1 - q$ with $q \in (0, 1)$, we get

$$\begin{split} & \stackrel{N(Ax_{2n}Sx_{2n},t) \circ N(Bx_{2n+1},Tx_{2n+1},t) \circ N(Sx_{2n}Tx_{2n+1},t) \circ}{\int_{0}^{N(Ax_{2n}Tx_{2n+1},t) \circ N(Bx_{2n}Tx_{2n},(2-(1-q))t)} \psi(t)dt} \\ & \leq \int_{0}^{N(Ax_{2n}Tx_{2n+1},(1-q)t) \circ N(Bx_{2n}Tx_{2n},(2-(1-q))t)} \psi(t)dt \\ & \stackrel{N(y_{2n+1},y_{2n},t) \circ N(y_{2n+2},Tx_{2n+1},t) \circ N(y_{2n},y_{2n+1},t) \circ}{V(y_{2n+1},y_{2n+2},t) \circ N(y_{2n},y_{2n+1},t) \circ} \\ & \leq \int_{0}^{N(y_{2n+1},y_{2n+2},t) \circ N(y_{2n+1},y_{2n+2},t) \circ N(y_{2n},y_{2n+1},t) \circ} \\ & \leq \int_{0}^{N(y_{2n},y_{2n+1},t) \circ N(y_{2n},y_{2n+2},t) \circ N(y_{2n},y_{2n+1},t) \circ} \psi(t)dt \end{split}$$

Volume No.06, Issue No. 12, December 2017 www.ijarse.com

ISSN: 2319-8354

$$\begin{split} & \leq \int_{0}^{\mathcal{N}(y_{2n},y_{2n+1},t)\circ\mathcal{N}(y_{2n+1},y_{2n+2},t)\circ\mathcal{N}(y_{2n},y_{2n+1},q\,t)} \psi(t)dt \\ & \leq \int_{0}^{\mathcal{N}(y_{2n},y_{2n+1},t)\circ\mathcal{N}(y_{2n+1},y_{2n+2},t)} \psi(t)dt \end{split}$$

From lemma 2.1 and 2.3 we have

$$\int_{0}^{M(y_{2n+1},y_{2n+2},kt)} \psi(t)dt \ge \int_{0}^{M(y_{2n},y_{2n+1},t)} \psi(t)dt$$

and
$$\int_0^{N(y_{2n+1},y_{2n+2},kt)} \psi(t)dt \le \int_0^{N(y_{2n},y_{2n+1},t)} \psi(t)dt$$

(1)

Similarly, we have

$$\int_{0}^{\mathbf{M}\,(\mathcal{Y}_{2n+2},\mathcal{Y}_{2n+3},kt)} \! \psi(t) dt \geq \int_{0}^{\mathbf{M}\,(\mathcal{Y}_{2n+1},\mathcal{Y}_{2n+2},t)} \! \psi(t) dt \text{ and }$$

$$\int_{0}^{N(y_{2n+2},y_{2n+3},kt)} \psi(t)dt \leq \int_{0}^{N(y_{2n+1},y_{2n+2},t)} \psi(t)dt$$

(2)

From (1) and (2), we have

$$\int_{0}^{M(y_{n+1},y_{n+2},kt)} \psi(t)dt \ge \int_{0}^{M(y_{n},y_{n+1},t)} \psi(t)dt$$

And

$$\int_0^{\mathcal{N}(y_{n+1},y_{n+2},kt)} \psi(t)dt \le \int_0^{\mathcal{N}(y_n,y_{n+1},t)} \psi(t)dt$$

(3)

From (3), we have
$$\int_0^{\mathbf{M}\,(\mathcal{Y}_{n+1}\mathcal{Y}_{n+2},kt)}\psi(t)dt \geq \int_0^{\mathbf{M}\,\left(\mathcal{Y}_{n}\mathcal{Y}_{n+1},\frac{t}{k}\right)}\psi(t)dt \\ \geq \int_0^{\mathbf{M}\,\left(\mathcal{Y}_{n-1}\mathcal{Y}_{n+1},\frac{t}{k^2}\right)}\psi(t)dt \geq \dots \geq 0$$

$$\int_0^{M\left(y_1,y_2,\frac{t}{k^n}\right)} \psi(t)dt {\to} 1 \text{ as } n \to \infty$$

and

$$\int_0^{\mathcal{N}(y_{n+1},y_{n+2},kt)} \psi(t)dt \leq \int_0^{\mathcal{N}(y_n,y_{n+1},t)} \psi(t)dt \int_0^{\mathcal{N}(y_{n-1},y_{n+1},\frac{t}{k^2})} \psi(t)dt \leq \ldots \leq$$

Volume No.06, Issue No. 12, December 2017 www.ijarse.com

IJARSE ISSN: 2319-8354

$$\int_0^{N\left(y_1,y_2,\frac{t}{k^n}\right)} \psi(t)dt {\to} 1 \text{ as } n \to \infty$$

So $\int_0^M (y_n, y_{n+1}, t) \psi(t) dt \to 1$ as $n \to \infty$ for any t > 0. For each $\varepsilon > 0$ and each t > 0, we can choose $n_0 \in N$ such that $\int_0^M \left(y_{n'}y_{n+1},t\right)\psi(t)dt > 1-\varepsilon$ for all $n>n_0$. For $n,m\in N$, we suppose $m\geq n$. Then we have that

$$\begin{split} \int_0^{\mathbf{M} \left(y_{n}, y_{m}, t\right)} \psi(t) dt &\geq \int_0^{\mathbf{M} \left(y_{n}, y_{n+1}, \frac{t}{m-n}\right)} \psi(t) dt \, * \int_0^{\mathbf{M} \left(y_{n+1}, y_{n+2}, \frac{t}{m-n}\right)} \psi(t) dt \, * \dots \\ & * \int_0^{\mathbf{M} \left(y_{n+1}, y_{n+2}, \frac{t}{m-n}\right)} \psi(t) \, dt \geq 1 - \varepsilon * 1 - \varepsilon * \dots \, \left(m-n\right) \text{ times. This implies} \end{split}$$

 $\int_0^M (y_n, y_m, t) \psi(t) dt \le (1 - \varepsilon)$ and hence $\{y_n\}$ is a Cauchy sequence in X.

Since $(X, M, N, *, \diamond)$ is complete, $\{y_n\}$ converges to some point $z \in X$, and so that $\{Ax_{2n-2}\}, \{Sx_{2n}\}, \{Sx_{$ $\{Bx_{2n-1}\}, Tx_{2n-1}\}$ also converges to Z. Since (A, S) and (B, T) are compatible of type (K), we have

Again taking limit as $n \rightarrow \infty$ and using (4), we have

$$\int_{0}^{M(Sz,Sz,t)} \psi(t)dt \geq \int_{0}^{M(Sz,Tz,(1-q)t)} \psi(t)dt$$

$$\int_{0}^{M(Sz,Tz,kt)} \psi(t)dt \geq \int_{0}^{M(Sz,Tz,(1-q)t)} \psi(t)dt$$

$$= \int_{0}^{M(Sz,Sz,t)} \psi(t)dt$$

$$= \int_{0}^{M(Sz,Tz,t)} \psi(t)dt$$

Volume No.06, Issue No. 12, December 2017 www.ijarse.com

IJARSE ISSN: 2319-8354

$$\geq \int_0^{M(Sz,Tz,t)} \psi(t)dt$$

and

$$\int_{0}^{N(AAx_{2n-2},BBx_{2n-1}.kt)} \psi(t)dt \\ \qquad \qquad (N(AAx_{2n-2},SAx_{2n-2},t) \circ N(BBx_{2n-1},TBx_{2n-1},t) \circ N(SAx_{2n-2},TBx_{2n-1},t) \circ \\ \leq \int_{0}^{N(AAx_{2n-2},TBx_{2n-1},t) \circ N(BAx_{2n-2},TAx_{2n-2},(2-\alpha)t)} \psi(t)dt$$

Again taking limit as $n \rightarrow \infty$ and using (4), we have

$$\int_{0}^{N(Sz,Sz,t)} \psi(t)dt \leq \int_{0}^{N(Sz,Tz,(1-q)t)} \psi(t)dt \leq \int_{0}^{N(Sz,Tz,(1-q)t)} \psi(t)dt \\
\leq \int_{0}^{N(Sz,Sz,t)} \psi(t)dt \leq \int_{0}^{N(Sz,Tz,(1-q)t)} \psi(t)dt \\
\leq \int_{0}^{N(Sz,Tz,t)} \psi(t)dt$$

Sz = Tz

From (ii), we get

$$\int_{0}^{M (Az,BBx_{2n-1},kt)} \psi(t)dt \ge \int_{0}^{M (Az,TBx_{2n-1},t)*M(Bz,Tz,(2-\alpha)t)} \psi(t)dt$$

Again taking limit as $n \rightarrow \infty$ and using (4), we have

$$\int_{0}^{M (Az,Tz,kt)} \psi(t)dt \geq \int_{0}^{M (Az,Tz,(1-q)t) * M(Bz,Tz,(2-(1-q)t)} \psi(t)dt$$

$$= \int_{0}^{M (Az,Tz,kt) * M(Bz,Tz,(2-(1-q)t))} \psi(t)dt$$

$$= \int_{0}^{M (Az,Tz,t) * M(Bz,Tz,t) * M(Bz,Tz,qt)} \psi(t)dt$$

$$\geq \int_{0}^{M (Az,Tz,t) * M(Bz,Tz,t)} \psi(t)dt$$

$$\geq \int_{0}^{M (Az,Tz,t) * M(Bz,Tz,t)} \psi(t)dt$$

Volume No.06, Issue No. 12, December 2017 www.ijarse.com

IJARSE ISSN: 2319-8354

$$\geq \int_0^{M (Az,Tz,t) * 1} \psi(t) dt$$

$$\geq \int_0^{M (Az,Tz,t)} \psi(t) dt$$

Az = Tz

and

$$\int_{0}^{N(Az,BBx_{2n-1},RBx_{2n-1},t)} \psi(t)dt \ge \int_{0}^{N(Az,BBx_{2n-1},TBx_{2n-1},t)} \psi(t)dt$$

Again taking limit as $n \rightarrow \infty$ and using (4), we have

$$\int_{0}^{N(Az,Tz,kt)} \psi(t)dt \leq \int_{0}^{N(Az,Tz,(1-q)t)} \int_{0}^{N(Bz,Tz,t)} \psi(t)dt$$

$$\leq \int_{0}^{N(Az,Tz,(1-q)t)} \int_{0}^{N(Bz,Tz,(2-(1-q)t))} \psi(t)dt$$

$$\leq \int_{0}^{N(Az,Tz,t)} \int_{0}^{N(Bz,Tz,t)} \int_{0}^{N(Bz,Tz,t)} \psi(t)dt$$

$$\leq \int_{0}^{N(Az,Tz,t)} \int_{0}^{N(Az,Tz,t)} \psi(t)dt$$

$$\leq \int_{0}^{N(Az,Tz,t)} \int_{0}^{N(Az,Tz,t)} \psi(t)dt$$

$$\leq \int_{0}^{N(Az,Tz,t)} \psi(t)dt$$

$$\leq \int_{0}^{N(Az,Tz,t)} \psi(t)dt$$

Hence Az = Tz

From (ii), we get

$$\int_{0}^{M (Az,Bz,kt)} \psi(t)dt \geq \int_{0}^{M (Az,Tz,xt) * M(Bz,Tz,t) * M(Sz,Tz,t) *} \psi(t)dt$$

$$\int_{0}^{M (Az,Bz,kt)} \psi(t)dt \geq \int_{0}^{M (Az,Tz,xt) * M(Bz,Tz,t) * M(Bz,Tz,t) *} \psi(t)dt$$

$$\geq \int_{0}^{M (Tz,Tz,t) * M(Bz,Tz,t) * M(Tz,Tz,t) *} \psi(t)dt$$

$$\int_{0}^{M (Tz,Tz,t) * M(Bz,Tz,t) * M(Tz,Tz,t) *} \psi(t)dt$$

$$\geq \int_{0}^{M (Tz,Tz,t) * M(Bz,Tz,t) * M(Bz,Tz,t) *} \psi(t)dt$$

$$\geq \int_{0}^{1* M (Bz,Tz,t) * 1*1} \psi(t)dt$$

Volume No.06, Issue No. 12, December 2017 www.ijarse.com

IJARSE ISSN: 2319-8354

$$\geq \int_0^{M(Bz,Az,t)} \psi(t)dt$$
$$\geq \int_0^{M(Bz,Az,t)} \psi(t)dt$$

and

$$\int_{0}^{N(Az,Bz,kt)} \psi(t)dt \leq \int_{0}^{N(Az,Tz,\alpha t) \circ N(Bz,Tz,t) \circ N(Bz,Tz,t) \circ} \psi(t)dt$$

$$\int_{0}^{N(Tz,Tz,t) \circ N(Bz,Tz,t) \circ N(Tz,Tz,t) \circ} \psi(t)dt$$

$$\leq \int_{0}^{N(Tz,Tz,t) \circ N(Bz,Tz,t) \circ N(Tz,Tz,t) \circ} \psi(t)dt$$

$$\leq \int_{0}^{N(Tz,Tz,t) \circ N(Bz,Tz,t) \circ N(Tz,Tz,t) \circ} \psi(t)dt$$

$$\leq \int_{0}^{N(Tz,Tz,t) \circ N(Bz,Tz,t) \circ N(Bz,Tz,t) \circ} \psi(t)dt$$

$$\leq \int_{0}^{N(Bz,Tz,t) \circ N(Bz,Tz,t) \circ} \psi(t)dt$$

$$\leq \int_{0}^{N(Bz,Az,t)} \psi(t)dt$$

$$\leq \int_{0}^{N(Bz,Az,t)} \psi(t)dt$$

Az = Bz

Therefore Az = Bz = Tz = Sz

Now, we show that Bz = z. From (ii), we get

And, taking limit as $n \rightarrow \infty$, we have

$$\int_{0}^{M(z,Bz,kt)} \psi(t)dt \ge \int_{0}^{M(Tz,Tz,t)*M(z,z,t)*M(z,z,t)*M(z,z,t)} \psi(t)dt$$

$$= \int_{0}^{1*M(Bz,Tz,t)*M(z,Tz,t)*} \psi(t)dt$$

$$\ge \int_{0}^{M(Bz,Tz,t)*M(z,Tz,t)} \psi(t)dt$$

$$\ge \int_{0}^{M(Bz,Tz,t)*M(z,Tz,t)} \psi(t)dt$$

Volume No.06, Issue No. 12, December 2017 www.ijarse.com

IJARSE ISSN: 2319-8354

$$\geq \int_0^{M(\mathsf{T}z,\mathsf{T}z,t)*M(z,\mathsf{B}z,t)} \psi(t)dt$$
$$\geq \int_0^{M(z,\mathsf{B}z,t)} \psi(t)dt$$

And

$$\int_{0}^{N(z,Bz,kt)} \psi(t)dt \geq \int_{0}^{N(Tz,Tz,t) \circ N(z,z,t) \circ N(z,z,t) \circ N(z,z,t)} \psi(t)dt$$

$$\geq \int_{0}^{N(Bz,Tz,t) \circ N(z,z,t) \circ N(z,z,t) \circ N(z,z,t)} \psi(t)dt$$

$$\geq \int_{0}^{N(Bz,Tz,t) \circ N(z,Tz,t) \circ} \psi(t)dt$$

$$\geq \int_{0}^{N(Bz,Tz,t) \circ N(z,Tz,t)} \psi(t)dt$$

$$\geq \int_{0}^{N(Tz,Tz,t) \circ N(z,Bz,t)} \psi(t)dt$$

$$\geq \int_{0}^{N(Tz,Tz,t) \circ N(z,Bz,t)} \psi(t)dt$$

And hence Bz = z.

Thus we get z = Az = Bz = Tz = Sz and so z is a common fixed point of A, B, S and T.

Uniqueness: In order to prove the uniqueness of fixed point, let u be another common fixed point of A, B, S and T. Then Au = Bu = Su = Tu, therefore, using (ii), we get

$$\int_{0}^{M(z,w,t)} \psi(t) dt = \int_{0}^{M(Az,Bw,kt)} \psi(t) dt \ge \int_{0}^{M(Az,Bw,kt)} \psi(t) dt \ge \int_{0}^{M(Az,Tw,\infty t)*M(Bz,Tz,(2-\infty)t)} \psi(t) dt$$

$$\int_{0}^{M(Az,Bw,kt)} \psi(t) dt \ge \int_{0}^{M(z,w,t)} \psi(t) dt$$

$$\int_{0}^{N(z,w,t)} \psi(t) dt = \int_{0}^{N(Az,Bw,kt)} \psi(t) dt \times \int_{0}^{N(Az,Bw,kt)} \psi(t) dt = \int_{0}^{N(Az,Bw,kt)} \psi(t) dt \times \int_{0}^{N(Az,Bw,kt)} \psi(t) dt = \int_{0}^{N(Az,Bw,kt)} \psi(t) dt = \int_{0}^{N(Az,Bw,kt)} \psi(t) dt$$

$$\int_0^{\mathrm{N}\,(\mathrm{Az},\mathrm{Bw},kt)} \psi(t)dt \leq \int_0^{\mathrm{N}\,(\mathrm{z},w,t)} \psi(t)dt$$

From lemma 2.2, we get z = w

This completes the proof of theorem.

Volume No.06, Issue No. 12, December 2017 www.ijarse.com

IJARSE ISSN: 2319-8354

Corollary: 3.1

Let (X, M, N, *, •) be a complete Intuitionistic fuzzy metric space and A, S be self mapping of X satisfying the following conditions:

(i) $A(X) \subseteq S(X)$

(ii)
$$\int_{0}^{M(Ax,Ay,kt)} \psi(t)dt \ge \int_{0}^{M(Ax,Sx,t)*M(Ay,Sy,t)*M(Sx,Sy,t)*} \psi(t)dt$$

$$\int_{0}^{N(Ax,Sy,kt)} \psi(t)dt \leq \int_{0}^{N(Ax,Sx,t) \circ N(Ay,Sy,t) \circ N(Sx,Sy,t) \circ} \psi(t)dt$$

Where $\alpha: [0, 1] \to [0, 1]$ is continuous function such that r(t) > t for some 0 < t < 1 for all x, $y \in X$, $k \in (0,1)$, $\alpha \in (0,2)$ and

(iii) S is continuous.

If (A, S) compatible of type of (K), then A, S have a unique common fixed point.

Corollary: 3.2

Let (X, M, N, *, •) be a complete Intuitionistic fuzzy metric space and A, B, S and T be self mapping of X satisfying the following conditions:

(i) $A(X) \subseteq T(X)$ and $B(X) \subseteq S(X)$

(ii)
$$\int_{0}^{M(Ax,By,kt)} \psi(t)dt \ge \int_{0}^{M(Ax,Sx,t)*M(Bx,Ty,t)*M(Sx,Ty,t)*} \psi(t)dt$$

$$\int_{0}^{N(Ax,By,kt)} \psi(t)dt \leq \int_{0}^{N(Ax,Sx,t) \circ N(Bx,Ty,t) \circ N(Sx,Ty,t) \circ} \psi(t)dt$$

Where $\alpha: [0, 1] \to [0, 1]$ is continuous function such that r(t) > t for some t > 1 for all $x, y \in X, k \in (0,1)$ and

(iii) S and T are continuous.

If (A, S) and (B, T) compatible of type of (K), then A, B, S and T have a unique common fixed point.

Volume No.06, Issue No. 12, December 2017 www.ijarse.com

Corollary: 3.3

Let (X, M, N, *, •) be a complete Intuitionistic fuzzy metric space and A, B, S and T be self mapping of X satisfying conditions of our main theorem

If we putting $\alpha = 1$ in (ii) condition of our main theorem, we have

(ii)
$$\int_{0}^{M(Ax,By,kt)} \psi(t)dt \geq \int_{0}^{M(Ax,Ty,t)*M(By,Ty,t)*M(Sx,Ty,t)*} \psi(t)dt$$

$$\int_{0}^{N(Ax,By,kt)} \psi(t)dt \leq \int_{0}^{N(Ax,Sx,t) \circ N(By,Ty,t) \circ N(Sx,Ty,t) \circ} \psi(t)dt$$

Where $x:[0,1] \to [0,1]$ is continuous function such that r(t) > t for some t > 1 for all $x, y \in X$, $k \in (0,1)$ and

If (A, S) and (B, T) have a coincidence point .Moreover A, B, S and T have a unique common fixed point in X provided both the pairs (A, S) and (B, T) are compatible of type of (K).

REFERENCES

- [1] Atanassov K., Intuitionistic Fuzzy sets, Fuzzy Sets and System, 20, (1986), 87-96.
- [2] Coker D., An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and System, 88 (1997), 81-89.
- [3] Deng Z. K., Fuzzy pseudo-metric spaces, J. Math. Anal. Appl., 86 (1982), 74 95.
- [4] Erceg M. A., Metric spaces in fuzzy set theory, J. Math. Anal. Appl., 69 (1979),338-353.
- [5] Fang J.X., On some result theorems in fuzzy metric spaces, Fuzzy sets and Systems, (1992), 107-113. [6] George A. & Veeramani P., On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64(1994), 395-399.
- [7] George A. & Veeramani P., On some results of analysis for fuzzy metric spaces, Fuzzy Sets and Systems 90 (1997), 365-368.
- [8] Jungck G. and Rhoades B. E., Fixed Point Theorems for Occasionally Weakly Compatible Mappings, Fixed Point Theory, 7 (2006), 287-296.
- [9] Jungck G., Compatible mappings and fixed points, Amer. Math. Monthly, 83 (1976), 261 263.
- [10] Kaleva O. and Seikkala S., On fuzzy metric spaces, Fuzzy Sets and Systems, 12 (1984), 225-229.
- [11] Kramosil I. and Michalek J., Fuzzy metric and Statistical metric spaces, Kybernetica, 11 (1975), 326-334.
- [12] Manro S., Common fixed points of self maps satisfying an integral type contractive condition in intuitionistic fuzzy metric space, I. J. Modern Education and Computer Science, 5 (2012), 25 30.
- [13] Manroi S. and Kang S.M., Common fixed point theorem for four mapping in intuitionistic fuzzy metric spaces, Int. Journal of Pure and Applied Math, 91 (2014), 253 264.

Volume No.06, Issue No. 12, December 2017 www.ijarse.com

IJARSE ISSN: 2319-8354

- [14] Muralisankar S. and Kalpana G., Common fixed points theorem in intuitionistic fuzzy metric space using general contractive condition of integral type, Int. J. Contemp. Math. Sciences, 11 (2009), 505 518.
- [15] Park J. H., Intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals, 22 (2004) 1039-1046.
- [16] Rajput A., Shahnawaz S. and Jain J., A fixed point theorem in modified intuitionistic fuzzy metric spaces, Int. Journal of Scientific and Engineering, 4 (2013), 2229 5518.
- [17] Turkoglu D., Alaca C., Y.J. Cho and Yildiz C., common fixed point theorems in intuitionistic fuzzy metric spaces, J. Appl. Math. And Computing, 22 (2006), 411-424.
- [18] Turkoglu D., Alaca C. and Yildiz C., Compatible maps and Compatible maps of Type (α) and (β) in intuitionistic fuzzy metric spaces, Demonstratio Math., 39 (2006), 671-684.
- [19] Turkoglu D., Alaca C. and Yildiz C., Fixed points in Intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractal, 29 (2006), 1073-1078.
- [20] Zadeh L.A. Fuzzy sets, Information and control, 8 (1965), 338-353.